線形写像の表現行列【線形代数】

このノートではベクトル空間と線形写像のそれぞれについては既知とする.ベクトル空間の係数体は ℝ のみを考え, 「 $\mathbb R$ 上のベクトル空間」を単に「ベクトル空間」と書く.数ベクトル空間 $\mathbb R^n$ の基本ベクトルを $e_i^{(n)}$ と書き,混乱の心 配が無い場合には次元 n を省略して単に e_i と書く.例で用いるベクトル空間 $\mathbb{R}[x]_n$ は実係数の高々 n 次の多項式全体 の集合 (に多項式の普通の加法とスカラー乗法を入れたもの) を表す. n 個のベクトル (a_1,\ldots,a_n) が張る (生成する) ベクトル空間を $\langle a_1, \ldots, a_n \rangle$ と書く.

ベクトルの成分表示

n 次元ベクトル空間 V の基底 $A = (a_1, \dots, a_n)$ を選ぶと, *1 V の任意の要素 v は

$$v = \sum_{i=1}^{n} v_i a_i = v_1 a_1 + \dots + v_n a_n$$

と一意に表すことができる.この係数を順に縦に並べて作った数ベクトル $v_A \ (\in \mathbb{R}^n)$ を基底 A による $v \ (\in V)$ の成分表 示と呼ぶ. すなわち,

$$v_A = (v_1 a_1 + \dots + v_n a_n)_A = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

である. 基底ベクトル a_i の成分表示は $(a_i)_A = e_i$ であり, *2

$$[(a_1)_A \cdots (a_n)_A] = [e_1 \cdots e_n] = E$$

は $n \times n$ の単位行列である.また, $A = (a_1, \cdots, a_n)$ を行べクトルのように扱い行列の演算規則を流用して

$$v = v_1 a_1 + \dots + v_n a_n = (a_1, \dots, a_n) \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = A v_A$$

のような記法を許しておくと便利である. さらに、数ベクトル空間 $V \subset \mathbb{R}^m$ に対しては、基底 $A = (a_1, \cdots, a_n)$ を $A=[a_1,\cdots,a_n]$ とも書いて,A を m imes n 行列と同一視することにする.このとき, v_A は連立方程式 $Av_A=v$ の解と して、拡大係数行列 [A|v] の簡約化によって求めることができる.

例 1 $V = \mathbb{R}^2$ の基底 $E = (e_1, e_2) = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{pmatrix}$ をとる. $v = \begin{bmatrix} 1 \\ 3 \end{bmatrix} (\in V)$ は $v = \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = e_1 + 3e_2$ と書け るので,v の E による成分表示は $v_E=\begin{bmatrix}1\\3\end{bmatrix}$ $(\in\mathbb{R}^2)$ である.すなわち,数ベクトルの標準基底による成分表示は元の数ベクトルと一致する.これは $v=Ev_E$ という表記とも整合的である.

例 2 $V=\mathbb{R}^2$ の基底 $A=(a_1,a_2)=\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}1\\-1\end{bmatrix}\right)$ をとる。 $v=\begin{bmatrix}1\\3\end{bmatrix}$ $(\in V)$ は $v=\begin{bmatrix}1\\2\end{bmatrix}=2\begin{bmatrix}1\\1\end{bmatrix}-\begin{bmatrix}1\\-1\end{bmatrix}=2e_1-e_2$ と 書けるので、v の A による成分表示は $v_A = \begin{bmatrix} 2 \\ -1 \end{bmatrix} (\in \mathbb{R}^2)$ である. *3

例 3
$$V=\langle e_1,e_2\rangle=\left\langle\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix}\right\rangle\subset\mathbb{R}^3$$
 の基底 $A=(e_1,e_2)=\left(\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix}\right)$ をとる. $v=\begin{bmatrix}1\\3\\0\end{bmatrix}(\in V)$ は

$$v=egin{bmatrix}1\\3\\0\end{bmatrix}=egin{bmatrix}1\\0\\0\end{bmatrix}+3egin{bmatrix}0\\1\\0\end{bmatrix}=e_1+3e_2$$
 と書けるので, v の A による成分表示は $v_A=egin{bmatrix}1\\3\end{bmatrix}(\in\mathbb{R}^2)$ である.このよう

に、 \mathbb{R}^m の部分空間である n 次元数ベクトル空間 $V \subset \mathbb{R}^m$ に対して、 $v \in V$ は m 個の値が並んだ数ベクトルだが、 $v_A \in \mathbb{R}^n$ は (V の次元である) n 個の値が並んだ数ベクトルであることに注意.

例 4
$$V = \mathbb{R}[x]_2$$
 の基底 $A = (1, x, x^2)$ をとる. $v = 1 + 2x + 3x^2$ の A による成分表示は $v_A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ $(\in \mathbb{R}^3)$ である.

 $^{^{*1}}$ ベクトルの成分表示は基底を構成するベクトルの順序に依存するので、集合 $\{a_1,\cdots,a_n\}$ ではなく順序対 (a_1,\cdots,a_n) で書くことにする.

^{*2} a_{iA} と書くと添字が見づらいので括弧を付けて $(a_i)_A$ と書いた。
*3 たとえば, $[A|v]=\begin{bmatrix}1&1&1\\1&-1&3\end{bmatrix} \rightarrow \begin{bmatrix}1&0&2\\0&1&-1\end{bmatrix}=[E|v_A]$ と簡約化で求めるとよい.

線形写像の表現行列

ベクトル空間 V からベクトル空間 W への線形写像 $f:V\to W$ を考える. V の基底として $A=(a_1,\cdots,a_n)$ $(n=\dim V)$,W の基底として $B=(b_1,\cdots,b_m)$ $(m=\dim W)$ をとり,V の要素 v と W の要素 w を,それぞれの基底 A と B により

$$v_A = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}, \quad w_B = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix},$$

と成分表示したとき,数ベクトル v_A を w_B に写す $m \times n$ 行列 f_{BA} を,V **の基底** A と W **の基底** B による線形写像 $f:V\to W$ の成分表示と呼ぶ.すなわち, f_{BA} は $w_B=f_{BA}v_A$ を満たす.f が線形変換 $f:V\to V$ のときには定義域 と終域に共通の基底 A をとることができる.この場合には f_{AA} を単に基底 A による線形変換 $f:V\to V$ の成分表示と いうことにする. f_{BA} は

$$(b_1,\cdots,b_m)f_{BA}=(f(a_1),\cdots,f(a_n))$$

を解いて求めることができる. $f(A) = (f(a_1), \dots, f(a_n))$ と略記して、 $Bf_{BA} = f(A)$ と書くと簡単である. 特に、 $W = \mathbb{R}^m$ のとき、簡約化 $[B|f(A)] \to [E|f_{BA}]$ により f_{BA} を求めることができる.*4

例 5 線形変換 $f: \mathbb{R}[x]_2 \to \mathbb{R}[x]_2; g(x) \mapsto g'(x)$ を考える. $\mathbb{R}[x]_2$ の基底 $A=(1,x,x^2)$ による f の表現行列 f_{AA} は、

$$(1,x,x^2)f_{AA} = \left(f(1),f(x),f(x^2)\right) = (0,1,2x) = (1,x,x^2) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} , \quad \therefore f_{AA} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} .$$

基底の変換

基底の変換行列

n 次元ベクトル空間 V の 2 つの基底 $A=(a_1,\cdots,a_n)$ と $B=(b_1,\cdots,b_n)$ をとる. $b_i\in V$ なので、 b_i は基底 A で

$$b_i = \sum_{j=1}^{n} p_{ij} a_j = p_{i1} a_1 + \dots + p_{in} a_n$$
, $\left(p_{ij} \equiv \left((b_i)_A \right)_j \right)$

と一意に表すことができる. これより、

$$B = (b_1, \dots, b_n) = (p_{11}a_1 + \dots + p_{1n}a_n, \dots, p_{n1}a_1 + \dots + p_{nn})$$
$$= (a_1, \dots, a_n) \begin{bmatrix} p_{11} & \dots & p_{n1} \\ \vdots & \ddots & \vdots \\ p_{1n} & \dots & p_{nn} \end{bmatrix} = AP , \quad (P_{ij} \equiv p_{ij})$$

と書ける.ここで定義した $n\times n$ 行列 P を基底 A から基底 B への変換行列と呼ぶ. *5 $V=\mathbb{R}^n$ のときには,AP=B は簡約化により $[A|B]\to [E|P]$ と解くことができる. *6

基底の変換に伴う表現行列の変換

線形写像 $f:V\to W$ を考える. V の基底として A と A'=AP, W の基底として B と B'=BQ をとると, $Bf_{BA}=f(A)$ と $B'f_{B'A'}=f(A')$ が成り立つ. ここで, $B'f_{B'A'}=BQf_{B'A'}$ と $f(A')=f(AP)=f(A)P=Bf_{BA}P$ より、 $*^7$

$$BQf_{B'A'} = Bf_{BA}P$$
, $\therefore f_{B'A'} = Q^{-1}f_{BA}P$,

が成り立つ.*8

 $^{^{*4}}$ $W=\mathbb{R}^m$ のとき, $f_{BA}=B^{-1}f(A)$ で f_{BA} を求めることもできるが,B が 2×2 よりも大きいと大変.また, $W\subsetneq\mathbb{R}^{m'}$ $(\dim W< m')$ のときにも簡約化で f_{BA} を求めることができる.

 $^{^{*5}}$ 基底を明記して基底の変換行列を P_{AB} と書き,基底の変換を $B=AP_{AB}$ と表してもよいが,煩わしいのでやめた.

^{*6} $V \subseteq \mathbb{R}^m$ でも簡約化で P が求まる.

 $^{^{*7}}$ f(AP)=f(A)P は f の線形性による. 証明は容易.

 $^{^{*8}}$ $A'=AP_{AA'}$ と $B'=BP_{BB'}$ と書けば, $P_{BB'}f_{B'A'}=f_{BA}P_{AA'}$ あるいは $f_{B'A'}=(P_{BB'})^{-1}f_{BA}P_{AA'}$ と書ける.